The competition number of a graph with exactly two holes

نویسندگان

  • Jung Yeun Lee
  • Suh-Ryung Kim
  • Seog-Jin Kim
  • Yoshio Sano
چکیده

Let D be an acyclic digraph. The competition graph of D is a graph which has the same vertex set asD and has an edge between x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices. A hole of a graph is a cycle of length at least 4 as an induced subgraph. In 2005, Kim [5] conjectured that the competition number of a graph with h holes is at most h + 1. Though Kim et al. [7] and Li and Chang [8] showed that her conjecture is true when the holes do not overlap much, it still remains open for the case where the holes share edges in an arbitrary way. In order to share an edge, a graph must have at least two holes and so it is natural to start with a graph with exactly two holes. In this paper, the conjecture is true for such a graph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 9 . 53 02 v 1 [ m at h . C O ] 2 9 Se p 20 09 The competition number of a graph with exactly two holes

Let D be an acyclic digraph. The competition graph of D is a graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number o...

متن کامل

On trivial ends of Cayley graph of groups

‎In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...

متن کامل

Graphs having many holes but with small competition numbers

The competition number k(G) of a graph G is the smallest number k such that G together with k isolated vertices added is the competition graph of an acyclic digraph. A chordless cycle of length at least 4 of a graph is called a hole of the graph. The number of holes of a graph is closely related to its competition number as the competition number of a chordal graph which does not contain a hole...

متن کامل

Detour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel

A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path  $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A  detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex  of at most on...

متن کامل

The Main Eigenvalues of the Undirected Power Graph of a Group

The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ars Comb.

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2010